3.459 \(\int \sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x) \, dx\)

Optimal. Leaf size=62 \[ \frac{\sqrt{a+b \sinh ^2(e+f x)}}{f}-\frac{\sqrt{a-b} \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{f} \]

[Out]

-((Sqrt[a - b]*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a - b]])/f) + Sqrt[a + b*Sinh[e + f*x]^2]/f

________________________________________________________________________________________

Rubi [A]  time = 0.0635905, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3194, 50, 63, 208} \[ \frac{\sqrt{a+b \sinh ^2(e+f x)}}{f}-\frac{\sqrt{a-b} \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x],x]

[Out]

-((Sqrt[a - b]*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a - b]])/f) + Sqrt[a + b*Sinh[e + f*x]^2]/f

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{1+x} \, dx,x,\sinh ^2(e+f x)\right )}{2 f}\\ &=\frac{\sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\sinh ^2(e+f x)\right )}{2 f}\\ &=\frac{\sqrt{a+b \sinh ^2(e+f x)}}{f}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^2(e+f x)}\right )}{b f}\\ &=-\frac{\sqrt{a-b} \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}+\frac{\sqrt{a+b \sinh ^2(e+f x)}}{f}\\ \end{align*}

Mathematica [A]  time = 0.0523067, size = 65, normalized size = 1.05 \[ \frac{\sqrt{a+b \cosh ^2(e+f x)-b}-\sqrt{a-b} \tanh ^{-1}\left (\frac{\sqrt{a+b \cosh ^2(e+f x)-b}}{\sqrt{a-b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x],x]

[Out]

(-(Sqrt[a - b]*ArcTanh[Sqrt[a - b + b*Cosh[e + f*x]^2]/Sqrt[a - b]]) + Sqrt[a - b + b*Cosh[e + f*x]^2])/f

________________________________________________________________________________________

Maple [C]  time = 0.079, size = 41, normalized size = 0.7 \begin{align*}{\frac{1}{f}\mbox{{\tt ` int/indef0`}} \left ({\frac{\sinh \left ( fx+e \right ) }{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}},\sinh \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e),x)

[Out]

`int/indef0`((a+b*sinh(f*x+e)^2)^(1/2)*sinh(f*x+e)/cosh(f*x+e)^2,sinh(f*x+e))/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sinh \left (f x + e\right )^{2} + a} \tanh \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sinh(f*x + e)^2 + a)*tanh(f*x + e), x)

________________________________________________________________________________________

Fricas [B]  time = 7.16423, size = 1705, normalized size = 27.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a - b)*(cosh(f*x + e) + sinh(f*x + e))*log((b*cosh(f*x + e)^4 + 4*b*cosh(f*x + e)*sinh(f*x + e)^3 +
 b*sinh(f*x + e)^4 + 2*(4*a - 3*b)*cosh(f*x + e)^2 + 2*(3*b*cosh(f*x + e)^2 + 4*a - 3*b)*sinh(f*x + e)^2 - 4*s
qrt(2)*sqrt(a - b)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*s
inh(f*x + e) + sinh(f*x + e)^2))*(cosh(f*x + e) + sinh(f*x + e)) + 4*(b*cosh(f*x + e)^3 + (4*a - 3*b)*cosh(f*x
 + e))*sinh(f*x + e) + b)/(cosh(f*x + e)^4 + 4*cosh(f*x + e)*sinh(f*x + e)^3 + sinh(f*x + e)^4 + 2*(3*cosh(f*x
 + e)^2 + 1)*sinh(f*x + e)^2 + 2*cosh(f*x + e)^2 + 4*(cosh(f*x + e)^3 + cosh(f*x + e))*sinh(f*x + e) + 1)) + s
qrt(2)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e)
 + sinh(f*x + e)^2)))/(f*cosh(f*x + e) + f*sinh(f*x + e)), -1/2*(2*sqrt(-a + b)*(cosh(f*x + e) + sinh(f*x + e)
)*arctan(-1/2*sqrt(2)*sqrt(-a + b)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2
*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2))/((a - b)*cosh(f*x + e) + (a - b)*sinh(f*x + e))) - sqrt(2)*sq
rt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f
*x + e)^2)))/(f*cosh(f*x + e) + f*sinh(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sinh ^{2}{\left (e + f x \right )}} \tanh{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)**2)**(1/2)*tanh(f*x+e),x)

[Out]

Integral(sqrt(a + b*sinh(e + f*x)**2)*tanh(e + f*x), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e),x, algorithm="giac")

[Out]

Exception raised: TypeError